MakeItFrom.com
Menu (ESC)

ISO-WD21150 Magnesium vs. EN 1.3967 Stainless Steel

ISO-WD21150 magnesium belongs to the magnesium alloys classification, while EN 1.3967 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD21150 magnesium and the bottom bar is EN 1.3967 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 5.7 to 11
22
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
79
Tensile Strength: Ultimate (UTS), MPa 240 to 290
690
Tensile Strength: Yield (Proof), MPa 120 to 200
350

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Mechanical, °C 110
1070
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 990
470
Thermal Expansion, µm/m-K 27
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
25
Density, g/cm3 1.7
7.9
Embodied Carbon, kg CO2/kg material 23
4.8
Embodied Energy, MJ/kg 160
66
Embodied Water, L/kg 980
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 24
130
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 460
310
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
25
Strength to Weight: Axial, points 40 to 48
24
Strength to Weight: Bending, points 52 to 58
22
Thermal Shock Resistance, points 15 to 17
15

Alloy Composition

Aluminum (Al), % 2.4 to 3.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 21.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.0050
50.3 to 57.8
Magnesium (Mg), % 94 to 97
0
Manganese (Mn), % 0.15 to 0.4
4.0 to 6.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0 to 0.0050
15 to 17
Niobium (Nb), % 0
0 to 0.25
Nitrogen (N), % 0
0.2 to 0.35
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0 to 0.3
0