MakeItFrom.com
Menu (ESC)

ISO-WD21150 Magnesium vs. EN 1.4877 Stainless Steel

ISO-WD21150 magnesium belongs to the magnesium alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD21150 magnesium and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 5.7 to 11
36
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
79
Shear Strength, MPa 150 to 170
420
Tensile Strength: Ultimate (UTS), MPa 240 to 290
630
Tensile Strength: Yield (Proof), MPa 120 to 200
200

Thermal Properties

Latent Heat of Fusion, J/g 350
310
Maximum Temperature: Mechanical, °C 110
1150
Melting Completion (Liquidus), °C 600
1400
Melting Onset (Solidus), °C 550
1360
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 100
12
Thermal Expansion, µm/m-K 27
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
37
Density, g/cm3 1.7
8.0
Embodied Carbon, kg CO2/kg material 23
6.2
Embodied Energy, MJ/kg 160
89
Embodied Water, L/kg 980
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 24
180
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 460
100
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
24
Strength to Weight: Axial, points 40 to 48
22
Strength to Weight: Bending, points 52 to 58
20
Thermal Diffusivity, mm2/s 60
3.2
Thermal Shock Resistance, points 15 to 17
15

Alloy Composition

Aluminum (Al), % 2.4 to 3.6
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.0050
36.4 to 42.3
Magnesium (Mg), % 94 to 97
0
Manganese (Mn), % 0.15 to 0.4
0 to 1.0
Nickel (Ni), % 0 to 0.0050
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0 to 0.3
0