MakeItFrom.com
Menu (ESC)

ISO-WD21150 Magnesium vs. EN 1.5510 Steel

ISO-WD21150 magnesium belongs to the magnesium alloys classification, while EN 1.5510 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD21150 magnesium and the bottom bar is EN 1.5510 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 5.7 to 11
11 to 21
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Shear Strength, MPa 150 to 170
310 to 380
Tensile Strength: Ultimate (UTS), MPa 240 to 290
450 to 1600
Tensile Strength: Yield (Proof), MPa 120 to 200
310 to 520

Thermal Properties

Latent Heat of Fusion, J/g 350
250
Maximum Temperature: Mechanical, °C 110
400
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 100
51
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 12
1.9
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 23
1.4
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 980
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 24
46 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 460
260 to 710
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 70
24
Strength to Weight: Axial, points 40 to 48
16 to 57
Strength to Weight: Bending, points 52 to 58
17 to 39
Thermal Diffusivity, mm2/s 60
14
Thermal Shock Resistance, points 15 to 17
13 to 47

Alloy Composition

Aluminum (Al), % 2.4 to 3.6
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.25 to 0.3
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.050
0 to 0.25
Iron (Fe), % 0 to 0.0050
97.9 to 99.149
Magnesium (Mg), % 94 to 97
0
Manganese (Mn), % 0.15 to 0.4
0.6 to 0.9
Nickel (Ni), % 0 to 0.0050
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0 to 0.3
0