MakeItFrom.com
Menu (ESC)

ISO-WD21150 Magnesium vs. C82000 Copper

ISO-WD21150 magnesium belongs to the magnesium alloys classification, while C82000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD21150 magnesium and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
120
Elongation at Break, % 5.7 to 11
8.0 to 20
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 17
45
Tensile Strength: Ultimate (UTS), MPa 240 to 290
350 to 690
Tensile Strength: Yield (Proof), MPa 120 to 200
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 350
220
Maximum Temperature: Mechanical, °C 110
220
Melting Completion (Liquidus), °C 600
1090
Melting Onset (Solidus), °C 550
970
Specific Heat Capacity, J/kg-K 990
390
Thermal Conductivity, W/m-K 100
260
Thermal Expansion, µm/m-K 27
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
45
Electrical Conductivity: Equal Weight (Specific), % IACS 100
46

Otherwise Unclassified Properties

Base Metal Price, % relative 12
60
Density, g/cm3 1.7
8.9
Embodied Carbon, kg CO2/kg material 23
5.0
Embodied Energy, MJ/kg 160
77
Embodied Water, L/kg 980
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 24
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 460
80 to 1120
Stiffness to Weight: Axial, points 15
7.5
Stiffness to Weight: Bending, points 70
18
Strength to Weight: Axial, points 40 to 48
11 to 22
Strength to Weight: Bending, points 52 to 58
12 to 20
Thermal Diffusivity, mm2/s 60
76
Thermal Shock Resistance, points 15 to 17
12 to 24

Alloy Composition

Aluminum (Al), % 2.4 to 3.6
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0 to 0.050
95.2 to 97.4
Iron (Fe), % 0 to 0.0050
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 94 to 97
0
Manganese (Mn), % 0.15 to 0.4
0
Nickel (Ni), % 0 to 0.0050
0 to 0.2
Silicon (Si), % 0 to 0.1
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0.5 to 1.5
0 to 0.1
Residuals, % 0
0 to 0.5

Comparable Variants