MakeItFrom.com
Menu (ESC)

ISO-WD21150 Magnesium vs. R56406 Titanium

ISO-WD21150 magnesium belongs to the magnesium alloys classification, while R56406 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD21150 magnesium and the bottom bar is R56406 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
110
Elongation at Break, % 5.7 to 11
9.1
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 17
40
Tensile Strength: Ultimate (UTS), MPa 240 to 290
980
Tensile Strength: Yield (Proof), MPa 120 to 200
850

Thermal Properties

Latent Heat of Fusion, J/g 350
410
Maximum Temperature: Mechanical, °C 110
340
Melting Completion (Liquidus), °C 600
1610
Melting Onset (Solidus), °C 550
1560
Specific Heat Capacity, J/kg-K 990
560
Thermal Conductivity, W/m-K 100
7.1
Thermal Expansion, µm/m-K 27
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 1.7
4.5
Embodied Carbon, kg CO2/kg material 23
38
Embodied Energy, MJ/kg 160
610
Embodied Water, L/kg 980
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 24
85
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 460
3420
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 70
35
Strength to Weight: Axial, points 40 to 48
61
Strength to Weight: Bending, points 52 to 58
49
Thermal Diffusivity, mm2/s 60
2.8
Thermal Shock Resistance, points 15 to 17
69

Alloy Composition

Aluminum (Al), % 2.4 to 3.6
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.0050
0 to 0.3
Magnesium (Mg), % 94 to 97
0
Manganese (Mn), % 0.15 to 0.4
0
Nickel (Ni), % 0 to 0.0050
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.1
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0 to 0.3
0