MakeItFrom.com
Menu (ESC)

ISO-WD21150 Magnesium vs. S35140 Stainless Steel

ISO-WD21150 magnesium belongs to the magnesium alloys classification, while S35140 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD21150 magnesium and the bottom bar is S35140 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 5.7 to 11
34
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
78
Shear Strength, MPa 150 to 170
460
Tensile Strength: Ultimate (UTS), MPa 240 to 290
690
Tensile Strength: Yield (Proof), MPa 120 to 200
310

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Mechanical, °C 110
1100
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 100
14
Thermal Expansion, µm/m-K 27
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 1.7
8.0
Embodied Carbon, kg CO2/kg material 23
5.5
Embodied Energy, MJ/kg 160
78
Embodied Water, L/kg 980
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 24
190
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 460
250
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
24
Strength to Weight: Axial, points 40 to 48
24
Strength to Weight: Bending, points 52 to 58
22
Thermal Diffusivity, mm2/s 60
3.7
Thermal Shock Resistance, points 15 to 17
16

Alloy Composition

Aluminum (Al), % 2.4 to 3.6
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.0050
44.1 to 52.7
Magnesium (Mg), % 94 to 97
0
Manganese (Mn), % 0.15 to 0.4
1.0 to 3.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0 to 0.0050
25 to 27
Niobium (Nb), % 0
0.25 to 0.75
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0 to 0.3
0