MakeItFrom.com
Menu (ESC)

ISO-WD32250 Magnesium vs. 5049 Aluminum

ISO-WD32250 magnesium belongs to the magnesium alloys classification, while 5049 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ISO-WD32250 magnesium and the bottom bar is 5049 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
69
Elongation at Break, % 4.5 to 8.6
2.0 to 18
Fatigue Strength, MPa 170 to 210
79 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Shear Strength, MPa 180 to 190
130 to 190
Tensile Strength: Ultimate (UTS), MPa 310 to 330
210 to 330
Tensile Strength: Yield (Proof), MPa 240 to 290
91 to 280

Thermal Properties

Latent Heat of Fusion, J/g 340
400
Maximum Temperature: Mechanical, °C 120
190
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 550
620
Specific Heat Capacity, J/kg-K 980
900
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 26
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
35
Electrical Conductivity: Equal Weight (Specific), % IACS 130
110

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 1.8
2.7
Embodied Carbon, kg CO2/kg material 24
8.5
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 950
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 26
6.0 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 930
59 to 570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 67
50
Strength to Weight: Axial, points 49 to 51
22 to 34
Strength to Weight: Bending, points 58 to 60
29 to 39
Thermal Diffusivity, mm2/s 72
56
Thermal Shock Resistance, points 19 to 20
9.3 to 15

Alloy Composition

Aluminum (Al), % 0
94.7 to 97.9
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0
0 to 0.5
Magnesium (Mg), % 94.9 to 97.1
1.6 to 2.5
Manganese (Mn), % 0
0.5 to 1.1
Silicon (Si), % 0
0 to 0.4
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 2.5 to 4.0
0 to 0.2
Zirconium (Zr), % 0.45 to 0.8
0
Residuals, % 0
0 to 0.15