MakeItFrom.com
Menu (ESC)

ISO-WD32250 Magnesium vs. ACI-ASTM CN3MN Steel

ISO-WD32250 magnesium belongs to the magnesium alloys classification, while ACI-ASTM CN3MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32250 magnesium and the bottom bar is ACI-ASTM CN3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 4.5 to 8.6
39
Fatigue Strength, MPa 170 to 210
250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
80
Tensile Strength: Ultimate (UTS), MPa 310 to 330
620
Tensile Strength: Yield (Proof), MPa 240 to 290
300

Thermal Properties

Latent Heat of Fusion, J/g 340
310
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 980
460
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
33
Density, g/cm3 1.8
8.1
Embodied Carbon, kg CO2/kg material 24
6.2
Embodied Energy, MJ/kg 160
84
Embodied Water, L/kg 950
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 26
200
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 930
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 67
24
Strength to Weight: Axial, points 49 to 51
21
Strength to Weight: Bending, points 58 to 60
20
Thermal Diffusivity, mm2/s 72
3.4
Thermal Shock Resistance, points 19 to 20
14

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 0
41.4 to 50.3
Magnesium (Mg), % 94.9 to 97.1
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
23.5 to 25.5
Nitrogen (N), % 0
0.18 to 0.26
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 2.5 to 4.0
0
Zirconium (Zr), % 0.45 to 0.8
0
Residuals, % 0 to 0.3
0