MakeItFrom.com
Menu (ESC)

ISO-WD32250 Magnesium vs. EN 1.3566 Steel

ISO-WD32250 magnesium belongs to the magnesium alloys classification, while EN 1.3566 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32250 magnesium and the bottom bar is EN 1.3566 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Tensile Strength: Ultimate (UTS), MPa 310 to 330
490 to 1380

Thermal Properties

Latent Heat of Fusion, J/g 340
250
Maximum Temperature: Mechanical, °C 120
420
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 980
470
Thermal Conductivity, W/m-K 130
45
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.5
Density, g/cm3 1.8
7.8
Embodied Carbon, kg CO2/kg material 24
1.5
Embodied Energy, MJ/kg 160
20
Embodied Water, L/kg 950
52

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 67
24
Strength to Weight: Axial, points 49 to 51
17 to 49
Strength to Weight: Bending, points 58 to 60
17 to 35
Thermal Diffusivity, mm2/s 72
12
Thermal Shock Resistance, points 19 to 20
14 to 40

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0
0.12 to 0.18
Chromium (Cr), % 0
0.9 to 1.2
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 0
96.8 to 98.4
Magnesium (Mg), % 94.9 to 97.1
0
Manganese (Mn), % 0
0.6 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.25
Oxygen (O), % 0
0 to 0.0020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 2.5 to 4.0
0
Zirconium (Zr), % 0.45 to 0.8
0
Residuals, % 0 to 0.3
0