MakeItFrom.com
Menu (ESC)

ISO-WD32260 Magnesium vs. 3105 Aluminum

ISO-WD32260 magnesium belongs to the magnesium alloys classification, while 3105 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ISO-WD32260 magnesium and the bottom bar is 3105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
69
Elongation at Break, % 4.5 to 6.0
1.1 to 20
Fatigue Strength, MPa 150 to 190
39 to 95
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
26
Shear Strength, MPa 190 to 200
77 to 140
Tensile Strength: Ultimate (UTS), MPa 330 to 340
120 to 240
Tensile Strength: Yield (Proof), MPa 230 to 250
46 to 220

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 120
180
Melting Completion (Liquidus), °C 600
660
Melting Onset (Solidus), °C 520
640
Specific Heat Capacity, J/kg-K 970
900
Thermal Conductivity, W/m-K 110
170
Thermal Expansion, µm/m-K 27
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
44
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 1.9
2.8
Embodied Carbon, kg CO2/kg material 23
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 940
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
2.6 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 700
15 to 340
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
50
Strength to Weight: Axial, points 48 to 51
12 to 24
Strength to Weight: Bending, points 56 to 58
20 to 31
Thermal Diffusivity, mm2/s 63
68
Thermal Shock Resistance, points 19 to 20
5.2 to 11

Alloy Composition

Aluminum (Al), % 0
96 to 99.5
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 0
0 to 0.7
Magnesium (Mg), % 92.7 to 94.8
0.2 to 0.8
Manganese (Mn), % 0
0.3 to 0.8
Silicon (Si), % 0
0 to 0.6
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 4.8 to 6.2
0 to 0.4
Zirconium (Zr), % 0.45 to 0.8
0
Residuals, % 0
0 to 0.15