MakeItFrom.com
Menu (ESC)

ISO-WD32260 Magnesium vs. ACI-ASTM CA28MWV Steel

ISO-WD32260 magnesium belongs to the magnesium alloys classification, while ACI-ASTM CA28MWV steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32260 magnesium and the bottom bar is ACI-ASTM CA28MWV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 4.5 to 6.0
11
Fatigue Strength, MPa 150 to 190
470
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Tensile Strength: Ultimate (UTS), MPa 330 to 340
1080
Tensile Strength: Yield (Proof), MPa 230 to 250
870

Thermal Properties

Latent Heat of Fusion, J/g 330
270
Maximum Temperature: Mechanical, °C 120
740
Melting Completion (Liquidus), °C 600
1470
Melting Onset (Solidus), °C 520
1430
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
25
Thermal Expansion, µm/m-K 27
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
11
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 23
3.1
Embodied Energy, MJ/kg 160
44
Embodied Water, L/kg 940
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
110
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 700
1920
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 48 to 51
38
Strength to Weight: Bending, points 56 to 58
30
Thermal Diffusivity, mm2/s 63
6.6
Thermal Shock Resistance, points 19 to 20
40

Alloy Composition

Carbon (C), % 0
0.2 to 0.28
Chromium (Cr), % 0
11 to 12.5
Iron (Fe), % 0
81.4 to 85.8
Magnesium (Mg), % 92.7 to 94.8
0
Manganese (Mn), % 0
0.5 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 0
0.5 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 4.8 to 6.2
0
Zirconium (Zr), % 0.45 to 0.8
0
Residuals, % 0 to 0.3
0