MakeItFrom.com
Menu (ESC)

ISO-WD32260 Magnesium vs. EN 1.4542 Stainless Steel

ISO-WD32260 magnesium belongs to the magnesium alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32260 magnesium and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 4.5 to 6.0
5.7 to 20
Fatigue Strength, MPa 150 to 190
370 to 640
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Shear Strength, MPa 190 to 200
550 to 860
Tensile Strength: Ultimate (UTS), MPa 330 to 340
880 to 1470
Tensile Strength: Yield (Proof), MPa 230 to 250
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 120
860
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 520
1380
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 27
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 13
13
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 23
2.7
Embodied Energy, MJ/kg 160
39
Embodied Water, L/kg 940
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 700
880 to 4360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 48 to 51
31 to 52
Strength to Weight: Bending, points 56 to 58
26 to 37
Thermal Diffusivity, mm2/s 63
4.3
Thermal Shock Resistance, points 19 to 20
29 to 49

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 0
69.6 to 79
Magnesium (Mg), % 92.7 to 94.8
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 4.8 to 6.2
0
Zirconium (Zr), % 0.45 to 0.8
0
Residuals, % 0 to 0.3
0