MakeItFrom.com
Menu (ESC)

ISO-WD32260 Magnesium vs. EN 1.5510 Steel

ISO-WD32260 magnesium belongs to the magnesium alloys classification, while EN 1.5510 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32260 magnesium and the bottom bar is EN 1.5510 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 4.5 to 6.0
11 to 21
Fatigue Strength, MPa 150 to 190
220 to 330
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
73
Shear Strength, MPa 190 to 200
310 to 380
Tensile Strength: Ultimate (UTS), MPa 330 to 340
450 to 1600
Tensile Strength: Yield (Proof), MPa 230 to 250
310 to 520

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
51
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 13
1.9
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 23
1.4
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 940
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
46 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 700
260 to 710
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 63
24
Strength to Weight: Axial, points 48 to 51
16 to 57
Strength to Weight: Bending, points 56 to 58
17 to 39
Thermal Diffusivity, mm2/s 63
14
Thermal Shock Resistance, points 19 to 20
13 to 47

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.25 to 0.3
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 0
97.9 to 99.149
Magnesium (Mg), % 92.7 to 94.8
0
Manganese (Mn), % 0
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 4.8 to 6.2
0
Zirconium (Zr), % 0.45 to 0.8
0
Residuals, % 0 to 0.3
0