MakeItFrom.com
Menu (ESC)

ISO-WD32260 Magnesium vs. EN 1.7380 Steel

ISO-WD32260 magnesium belongs to the magnesium alloys classification, while EN 1.7380 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32260 magnesium and the bottom bar is EN 1.7380 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 4.5 to 6.0
19 to 20
Fatigue Strength, MPa 150 to 190
200 to 230
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
74
Shear Strength, MPa 190 to 200
330 to 350
Tensile Strength: Ultimate (UTS), MPa 330 to 340
540 to 550
Tensile Strength: Yield (Proof), MPa 230 to 250
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 330
260
Maximum Temperature: Mechanical, °C 120
460
Melting Completion (Liquidus), °C 600
1470
Melting Onset (Solidus), °C 520
1430
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
39
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 13
3.8
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 23
1.8
Embodied Energy, MJ/kg 160
23
Embodied Water, L/kg 940
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
87 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 700
230 to 280
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 63
24
Strength to Weight: Axial, points 48 to 51
19 to 20
Strength to Weight: Bending, points 56 to 58
19
Thermal Diffusivity, mm2/s 63
11
Thermal Shock Resistance, points 19 to 20
15 to 16

Alloy Composition

Carbon (C), % 0
0.080 to 0.14
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 0
94.6 to 96.6
Magnesium (Mg), % 92.7 to 94.8
0
Manganese (Mn), % 0
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 4.8 to 6.2
0
Zirconium (Zr), % 0.45 to 0.8
0
Residuals, % 0 to 0.3
0