MakeItFrom.com
Menu (ESC)

ISO-WD32260 Magnesium vs. C15500 Copper

ISO-WD32260 magnesium belongs to the magnesium alloys classification, while C15500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32260 magnesium and the bottom bar is C15500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
120
Elongation at Break, % 4.5 to 6.0
3.0 to 37
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 18
43
Shear Strength, MPa 190 to 200
190 to 320
Tensile Strength: Ultimate (UTS), MPa 330 to 340
280 to 550
Tensile Strength: Yield (Proof), MPa 230 to 250
130 to 530

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 120
200
Melting Completion (Liquidus), °C 600
1080
Melting Onset (Solidus), °C 520
1080
Specific Heat Capacity, J/kg-K 970
390
Thermal Conductivity, W/m-K 110
350
Thermal Expansion, µm/m-K 27
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
90
Electrical Conductivity: Equal Weight (Specific), % IACS 140
91

Otherwise Unclassified Properties

Base Metal Price, % relative 13
33
Density, g/cm3 1.9
8.9
Embodied Carbon, kg CO2/kg material 23
2.7
Embodied Energy, MJ/kg 160
42
Embodied Water, L/kg 940
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
15 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 700
72 to 1210
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 63
18
Strength to Weight: Axial, points 48 to 51
8.6 to 17
Strength to Weight: Bending, points 56 to 58
11 to 17
Thermal Diffusivity, mm2/s 63
100
Thermal Shock Resistance, points 19 to 20
9.8 to 20

Alloy Composition

Copper (Cu), % 0
99.75 to 99.853
Magnesium (Mg), % 92.7 to 94.8
0.080 to 0.13
Phosphorus (P), % 0
0.040 to 0.080
Silver (Ag), % 0
0.027 to 0.1
Zinc (Zn), % 4.8 to 6.2
0
Zirconium (Zr), % 0.45 to 0.8
0
Residuals, % 0
0 to 0.2