MakeItFrom.com
Menu (ESC)

ISO-WD32260 Magnesium vs. S13800 Stainless Steel

ISO-WD32260 magnesium belongs to the magnesium alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32260 magnesium and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 4.5 to 6.0
11 to 18
Fatigue Strength, MPa 150 to 190
410 to 870
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
77
Shear Strength, MPa 190 to 200
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 330 to 340
980 to 1730
Tensile Strength: Yield (Proof), MPa 230 to 250
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 120
810
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 520
1410
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 27
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
15
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 23
3.4
Embodied Energy, MJ/kg 160
46
Embodied Water, L/kg 940
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 700
1090 to 5490
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 48 to 51
35 to 61
Strength to Weight: Bending, points 56 to 58
28 to 41
Thermal Diffusivity, mm2/s 63
4.3
Thermal Shock Resistance, points 19 to 20
33 to 58

Alloy Composition

Aluminum (Al), % 0
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Iron (Fe), % 0
73.6 to 77.3
Magnesium (Mg), % 92.7 to 94.8
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Zinc (Zn), % 4.8 to 6.2
0
Zirconium (Zr), % 0.45 to 0.8
0
Residuals, % 0 to 0.3
0