MakeItFrom.com
Menu (ESC)

ISO-WD32260 Magnesium vs. S32906 Stainless Steel

ISO-WD32260 magnesium belongs to the magnesium alloys classification, while S32906 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32260 magnesium and the bottom bar is S32906 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
210
Elongation at Break, % 4.5 to 6.0
28
Fatigue Strength, MPa 150 to 190
460
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
81
Shear Strength, MPa 190 to 200
550
Tensile Strength: Ultimate (UTS), MPa 330 to 340
850
Tensile Strength: Yield (Proof), MPa 230 to 250
620

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 520
1380
Specific Heat Capacity, J/kg-K 970
480
Thermal Conductivity, W/m-K 110
13
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
20
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 23
3.7
Embodied Energy, MJ/kg 160
52
Embodied Water, L/kg 940
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
220
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 700
950
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 48 to 51
30
Strength to Weight: Bending, points 56 to 58
26
Thermal Diffusivity, mm2/s 63
3.6
Thermal Shock Resistance, points 19 to 20
23

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 0
0 to 0.8
Iron (Fe), % 0
56.6 to 63.6
Magnesium (Mg), % 92.7 to 94.8
0
Manganese (Mn), % 0
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 4.8 to 6.2
0
Zirconium (Zr), % 0.45 to 0.8
0
Residuals, % 0 to 0.3
0