MakeItFrom.com
Menu (ESC)

ISO-WD32350 Magnesium vs. 518.0 Aluminum

ISO-WD32350 magnesium belongs to the magnesium alloys classification, while 518.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ISO-WD32350 magnesium and the bottom bar is 518.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
67
Elongation at Break, % 5.7 to 10
5.0
Fatigue Strength, MPa 120 to 130
140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
25
Shear Strength, MPa 150 to 170
200
Tensile Strength: Ultimate (UTS), MPa 250 to 290
310
Tensile Strength: Yield (Proof), MPa 140 to 180
190

Thermal Properties

Latent Heat of Fusion, J/g 340
390
Maximum Temperature: Mechanical, °C 95
170
Melting Completion (Liquidus), °C 600
620
Melting Onset (Solidus), °C 560
560
Specific Heat Capacity, J/kg-K 990
900
Thermal Conductivity, W/m-K 130
98
Thermal Expansion, µm/m-K 25
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
24
Electrical Conductivity: Equal Weight (Specific), % IACS 130
81

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.7
Embodied Carbon, kg CO2/kg material 23
9.4
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 960
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 23
14
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 380
270
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 68
51
Strength to Weight: Axial, points 39 to 46
32
Strength to Weight: Bending, points 50 to 55
38
Thermal Diffusivity, mm2/s 73
40
Thermal Shock Resistance, points 16 to 18
14

Alloy Composition

Aluminum (Al), % 0 to 0.1
88.1 to 92.5
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.060
0 to 1.8
Magnesium (Mg), % 95.7 to 97.7
7.5 to 8.5
Manganese (Mn), % 0.6 to 1.3
0 to 0.35
Nickel (Ni), % 0 to 0.0050
0 to 0.15
Silicon (Si), % 0 to 0.1
0 to 0.35
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 1.8 to 2.3
0 to 0.15
Residuals, % 0
0 to 0.25