MakeItFrom.com
Menu (ESC)

ISO-WD32350 Magnesium vs. A535.0 Aluminum

ISO-WD32350 magnesium belongs to the magnesium alloys classification, while A535.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ISO-WD32350 magnesium and the bottom bar is A535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
67
Elongation at Break, % 5.7 to 10
9.0
Fatigue Strength, MPa 120 to 130
95
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
25
Tensile Strength: Ultimate (UTS), MPa 250 to 290
250
Tensile Strength: Yield (Proof), MPa 140 to 180
120

Thermal Properties

Latent Heat of Fusion, J/g 340
390
Maximum Temperature: Mechanical, °C 95
170
Melting Completion (Liquidus), °C 600
620
Melting Onset (Solidus), °C 560
550
Specific Heat Capacity, J/kg-K 990
910
Thermal Conductivity, W/m-K 130
100
Thermal Expansion, µm/m-K 25
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
23
Electrical Conductivity: Equal Weight (Specific), % IACS 130
79

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.6
Embodied Carbon, kg CO2/kg material 23
9.3
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 960
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 23
19
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 380
120
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 68
51
Strength to Weight: Axial, points 39 to 46
26
Strength to Weight: Bending, points 50 to 55
33
Thermal Diffusivity, mm2/s 73
42
Thermal Shock Resistance, points 16 to 18
11

Alloy Composition

Aluminum (Al), % 0 to 0.1
91.4 to 93.4
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.060
0 to 0.2
Magnesium (Mg), % 95.7 to 97.7
6.5 to 7.5
Manganese (Mn), % 0.6 to 1.3
0.1 to 0.25
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.1
0 to 0.2
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 1.8 to 2.3
0
Residuals, % 0
0 to 0.15