MakeItFrom.com
Menu (ESC)

ISO-WD32350 Magnesium vs. Grade CW6M Nickel

ISO-WD32350 magnesium belongs to the magnesium alloys classification, while grade CW6M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32350 magnesium and the bottom bar is grade CW6M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
220
Elongation at Break, % 5.7 to 10
29
Fatigue Strength, MPa 120 to 130
210
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
84
Tensile Strength: Ultimate (UTS), MPa 250 to 290
560
Tensile Strength: Yield (Proof), MPa 140 to 180
310

Thermal Properties

Latent Heat of Fusion, J/g 340
330
Maximum Temperature: Mechanical, °C 95
970
Melting Completion (Liquidus), °C 600
1530
Melting Onset (Solidus), °C 560
1470
Specific Heat Capacity, J/kg-K 990
430
Thermal Expansion, µm/m-K 25
12

Otherwise Unclassified Properties

Base Metal Price, % relative 12
65
Density, g/cm3 1.7
8.8
Embodied Carbon, kg CO2/kg material 23
13
Embodied Energy, MJ/kg 160
170
Embodied Water, L/kg 960
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 23
140
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 380
220
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 68
23
Strength to Weight: Axial, points 39 to 46
18
Strength to Weight: Bending, points 50 to 55
17
Thermal Shock Resistance, points 16 to 18
16

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.060
0 to 3.0
Magnesium (Mg), % 95.7 to 97.7
0
Manganese (Mn), % 0.6 to 1.3
0 to 1.0
Molybdenum (Mo), % 0
17 to 20
Nickel (Ni), % 0 to 0.0050
54.9 to 66
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 1.8 to 2.3
0
Residuals, % 0 to 0.3
0