MakeItFrom.com
Menu (ESC)

ISO-WD32350 Magnesium vs. Nickel 890

ISO-WD32350 magnesium belongs to the magnesium alloys classification, while nickel 890 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32350 magnesium and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 5.7 to 10
39
Fatigue Strength, MPa 120 to 130
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
78
Shear Strength, MPa 150 to 170
400
Tensile Strength: Ultimate (UTS), MPa 250 to 290
590
Tensile Strength: Yield (Proof), MPa 140 to 180
230

Thermal Properties

Latent Heat of Fusion, J/g 340
330
Maximum Temperature: Mechanical, °C 95
1000
Melting Completion (Liquidus), °C 600
1390
Melting Onset (Solidus), °C 560
1340
Specific Heat Capacity, J/kg-K 990
480
Thermal Expansion, µm/m-K 25
14

Otherwise Unclassified Properties

Base Metal Price, % relative 12
47
Density, g/cm3 1.7
8.1
Embodied Carbon, kg CO2/kg material 23
8.2
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 960
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 23
180
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 380
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 68
24
Strength to Weight: Axial, points 39 to 46
20
Strength to Weight: Bending, points 50 to 55
19
Thermal Shock Resistance, points 16 to 18
15

Alloy Composition

Aluminum (Al), % 0 to 0.1
0.050 to 0.6
Carbon (C), % 0
0.060 to 0.14
Chromium (Cr), % 0
23.5 to 28.5
Copper (Cu), % 0 to 0.1
0 to 0.75
Iron (Fe), % 0 to 0.060
17.3 to 33.9
Magnesium (Mg), % 95.7 to 97.7
0
Manganese (Mn), % 0.6 to 1.3
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0 to 0.0050
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Silicon (Si), % 0 to 0.1
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 1.8 to 2.3
0
Residuals, % 0 to 0.3
0