MakeItFrom.com
Menu (ESC)

ISO-WD32350 Magnesium vs. N06110 Nickel

ISO-WD32350 magnesium belongs to the magnesium alloys classification, while N06110 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32350 magnesium and the bottom bar is N06110 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 5.7 to 10
53
Fatigue Strength, MPa 120 to 130
320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
84
Shear Strength, MPa 150 to 170
530
Tensile Strength: Ultimate (UTS), MPa 250 to 290
730
Tensile Strength: Yield (Proof), MPa 140 to 180
330

Thermal Properties

Latent Heat of Fusion, J/g 340
340
Maximum Temperature: Mechanical, °C 95
1020
Melting Completion (Liquidus), °C 600
1490
Melting Onset (Solidus), °C 560
1440
Specific Heat Capacity, J/kg-K 990
440
Thermal Expansion, µm/m-K 25
12

Otherwise Unclassified Properties

Base Metal Price, % relative 12
65
Density, g/cm3 1.7
8.6
Embodied Carbon, kg CO2/kg material 23
11
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 960
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 23
320
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 380
260
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 68
23
Strength to Weight: Axial, points 39 to 46
23
Strength to Weight: Bending, points 50 to 55
21
Thermal Shock Resistance, points 16 to 18
20

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 1.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
28 to 33
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0 to 0.060
0 to 1.0
Magnesium (Mg), % 95.7 to 97.7
0
Manganese (Mn), % 0.6 to 1.3
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 12
Nickel (Ni), % 0 to 0.0050
51 to 62
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 1.0
Tungsten (W), % 0
1.0 to 4.0
Zinc (Zn), % 1.8 to 2.3
0
Residuals, % 0 to 0.3
0