MakeItFrom.com
Menu (ESC)

ISO-WD32350 Magnesium vs. S20161 Stainless Steel

ISO-WD32350 magnesium belongs to the magnesium alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32350 magnesium and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 5.7 to 10
46
Fatigue Strength, MPa 120 to 130
360
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Shear Strength, MPa 150 to 170
690
Tensile Strength: Ultimate (UTS), MPa 250 to 290
980
Tensile Strength: Yield (Proof), MPa 140 to 180
390

Thermal Properties

Latent Heat of Fusion, J/g 340
330
Maximum Temperature: Mechanical, °C 95
870
Melting Completion (Liquidus), °C 600
1380
Melting Onset (Solidus), °C 560
1330
Specific Heat Capacity, J/kg-K 990
490
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 25
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
12
Density, g/cm3 1.7
7.5
Embodied Carbon, kg CO2/kg material 23
2.7
Embodied Energy, MJ/kg 160
39
Embodied Water, L/kg 960
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 23
360
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 380
390
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 68
26
Strength to Weight: Axial, points 39 to 46
36
Strength to Weight: Bending, points 50 to 55
29
Thermal Diffusivity, mm2/s 73
4.0
Thermal Shock Resistance, points 16 to 18
22

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.060
65.6 to 73.9
Magnesium (Mg), % 95.7 to 97.7
0
Manganese (Mn), % 0.6 to 1.3
4.0 to 6.0
Nickel (Ni), % 0 to 0.0050
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 1.8 to 2.3
0
Residuals, % 0 to 0.3
0