MakeItFrom.com
Menu (ESC)

ISO-WD32350 Magnesium vs. S30615 Stainless Steel

ISO-WD32350 magnesium belongs to the magnesium alloys classification, while S30615 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32350 magnesium and the bottom bar is S30615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 5.7 to 10
39
Fatigue Strength, MPa 120 to 130
270
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
75
Shear Strength, MPa 150 to 170
470
Tensile Strength: Ultimate (UTS), MPa 250 to 290
690
Tensile Strength: Yield (Proof), MPa 140 to 180
310

Thermal Properties

Latent Heat of Fusion, J/g 340
340
Maximum Temperature: Mechanical, °C 95
960
Melting Completion (Liquidus), °C 600
1370
Melting Onset (Solidus), °C 560
1320
Specific Heat Capacity, J/kg-K 990
500
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 25
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
19
Density, g/cm3 1.7
7.6
Embodied Carbon, kg CO2/kg material 23
3.7
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 960
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 23
220
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 380
260
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 68
25
Strength to Weight: Axial, points 39 to 46
25
Strength to Weight: Bending, points 50 to 55
23
Thermal Diffusivity, mm2/s 73
3.7
Thermal Shock Resistance, points 16 to 18
16

Alloy Composition

Aluminum (Al), % 0 to 0.1
0.8 to 1.5
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0
17 to 19.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.060
56.7 to 65.3
Magnesium (Mg), % 95.7 to 97.7
0
Manganese (Mn), % 0.6 to 1.3
0 to 2.0
Nickel (Ni), % 0 to 0.0050
13.5 to 16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
3.2 to 4.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 1.8 to 2.3
0
Residuals, % 0 to 0.3
0