MakeItFrom.com
Menu (ESC)

ISO-WD43150 Magnesium vs. ASTM A182 Grade F6b

ISO-WD43150 magnesium belongs to the magnesium alloys classification, while ASTM A182 grade F6b belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD43150 magnesium and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 2.8
18
Fatigue Strength, MPa 100
440
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Shear Strength, MPa 140
530
Tensile Strength: Ultimate (UTS), MPa 250
850
Tensile Strength: Yield (Proof), MPa 150
710

Thermal Properties

Latent Heat of Fusion, J/g 350
280
Maximum Temperature: Mechanical, °C 95
750
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 590
1400
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 140
25
Thermal Expansion, µm/m-K 27
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 170
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 12
8.0
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 24
2.2
Embodied Energy, MJ/kg 160
30
Embodied Water, L/kg 970
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
140
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
25
Strength to Weight: Axial, points 41
30
Strength to Weight: Bending, points 52
26
Thermal Diffusivity, mm2/s 81
6.7
Thermal Shock Resistance, points 14
31

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0
81.2 to 87.1
Magnesium (Mg), % 97.5 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0 to 0.010
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Residuals, % 0 to 0.3
0