MakeItFrom.com
Menu (ESC)

ISO-WD43150 Magnesium vs. ASTM Grade HG10 MNN Steel

ISO-WD43150 magnesium belongs to the magnesium alloys classification, while ASTM grade HG10 MNN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD43150 magnesium and the bottom bar is ASTM grade HG10 MNN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 2.8
23
Fatigue Strength, MPa 100
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
77
Tensile Strength: Ultimate (UTS), MPa 250
590
Tensile Strength: Yield (Proof), MPa 150
250

Thermal Properties

Latent Heat of Fusion, J/g 350
290
Maximum Temperature: Mechanical, °C 95
990
Melting Completion (Liquidus), °C 610
1420
Melting Onset (Solidus), °C 590
1370
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 27
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 170
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
21
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 24
4.0
Embodied Energy, MJ/kg 160
58
Embodied Water, L/kg 970
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
160
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
25
Strength to Weight: Axial, points 41
21
Strength to Weight: Bending, points 52
20
Thermal Diffusivity, mm2/s 81
3.9
Thermal Shock Resistance, points 14
13

Alloy Composition

Carbon (C), % 0
0.070 to 0.11
Chromium (Cr), % 0
18.5 to 20.5
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0
57.9 to 66.5
Magnesium (Mg), % 97.5 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
3.0 to 5.0
Molybdenum (Mo), % 0
0.25 to 0.45
Nickel (Ni), % 0 to 0.010
11.5 to 13.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.7
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.3
0