MakeItFrom.com
Menu (ESC)

ISO-WD43150 Magnesium vs. EN 1.0033 Steel

ISO-WD43150 magnesium belongs to the magnesium alloys classification, while EN 1.0033 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD43150 magnesium and the bottom bar is EN 1.0033 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 2.8
17 to 32
Fatigue Strength, MPa 100
120 to 140
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
73
Shear Strength, MPa 140
200
Tensile Strength: Ultimate (UTS), MPa 250
300 to 330
Tensile Strength: Yield (Proof), MPa 150
150 to 200

Thermal Properties

Latent Heat of Fusion, J/g 350
250
Maximum Temperature: Mechanical, °C 95
400
Melting Completion (Liquidus), °C 610
1470
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 140
53
Thermal Expansion, µm/m-K 27
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 170
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
1.8
Density, g/cm3 1.7
7.9
Embodied Carbon, kg CO2/kg material 24
1.4
Embodied Energy, MJ/kg 160
18
Embodied Water, L/kg 970
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
48 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 250
63 to 100
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 71
24
Strength to Weight: Axial, points 41
10 to 12
Strength to Weight: Bending, points 52
13 to 14
Thermal Diffusivity, mm2/s 81
14
Thermal Shock Resistance, points 14
9.4 to 10

Alloy Composition

Carbon (C), % 0
0 to 0.11
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0
98.8 to 100
Magnesium (Mg), % 97.5 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0 to 0.7
Nickel (Ni), % 0 to 0.010
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Residuals, % 0 to 0.3
0