MakeItFrom.com
Menu (ESC)

ISO-WD43150 Magnesium vs. EN 1.4361 Stainless Steel

ISO-WD43150 magnesium belongs to the magnesium alloys classification, while EN 1.4361 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD43150 magnesium and the bottom bar is EN 1.4361 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 2.8
43
Fatigue Strength, MPa 100
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
75
Shear Strength, MPa 140
440
Tensile Strength: Ultimate (UTS), MPa 250
630
Tensile Strength: Yield (Proof), MPa 150
250

Thermal Properties

Latent Heat of Fusion, J/g 350
350
Maximum Temperature: Mechanical, °C 95
940
Melting Completion (Liquidus), °C 610
1370
Melting Onset (Solidus), °C 590
1330
Specific Heat Capacity, J/kg-K 990
490
Thermal Conductivity, W/m-K 140
14
Thermal Expansion, µm/m-K 27
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 170
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
19
Density, g/cm3 1.7
7.6
Embodied Carbon, kg CO2/kg material 24
3.6
Embodied Energy, MJ/kg 160
52
Embodied Water, L/kg 970
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
220
Resilience: Unit (Modulus of Resilience), kJ/m3 250
160
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
25
Strength to Weight: Axial, points 41
23
Strength to Weight: Bending, points 52
21
Thermal Diffusivity, mm2/s 81
3.7
Thermal Shock Resistance, points 14
15

Alloy Composition

Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0
58.7 to 65.8
Magnesium (Mg), % 97.5 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.010
14 to 16
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
3.7 to 4.5
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.3
0