MakeItFrom.com
Menu (ESC)

ISO-WD43150 Magnesium vs. EN 1.4835 Stainless Steel

ISO-WD43150 magnesium belongs to the magnesium alloys classification, while EN 1.4835 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD43150 magnesium and the bottom bar is EN 1.4835 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 2.8
43
Fatigue Strength, MPa 100
310
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
77
Shear Strength, MPa 140
520
Tensile Strength: Ultimate (UTS), MPa 250
750
Tensile Strength: Yield (Proof), MPa 150
350

Thermal Properties

Latent Heat of Fusion, J/g 350
320
Maximum Temperature: Mechanical, °C 95
1150
Melting Completion (Liquidus), °C 610
1400
Melting Onset (Solidus), °C 590
1360
Specific Heat Capacity, J/kg-K 990
490
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 27
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 170
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
17
Density, g/cm3 1.7
7.7
Embodied Carbon, kg CO2/kg material 24
3.3
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 970
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
270
Resilience: Unit (Modulus of Resilience), kJ/m3 250
310
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
25
Strength to Weight: Axial, points 41
27
Strength to Weight: Bending, points 52
24
Thermal Diffusivity, mm2/s 81
4.0
Thermal Shock Resistance, points 14
16

Alloy Composition

Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0
62 to 68.4
Magnesium (Mg), % 97.5 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0 to 1.0
Nickel (Ni), % 0 to 0.010
10 to 12
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
1.4 to 2.5
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.3
0