MakeItFrom.com
Menu (ESC)

ISO-WD43150 Magnesium vs. Grade Ti-Pd8A Titanium

ISO-WD43150 magnesium belongs to the magnesium alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD43150 magnesium and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
110
Elongation at Break, % 2.8
13
Fatigue Strength, MPa 100
260
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 18
40
Tensile Strength: Ultimate (UTS), MPa 250
500
Tensile Strength: Yield (Proof), MPa 150
430

Thermal Properties

Latent Heat of Fusion, J/g 350
420
Maximum Temperature: Mechanical, °C 95
320
Melting Completion (Liquidus), °C 610
1660
Melting Onset (Solidus), °C 590
1610
Specific Heat Capacity, J/kg-K 990
540
Thermal Conductivity, W/m-K 140
21
Thermal Expansion, µm/m-K 27
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 170
6.9

Otherwise Unclassified Properties

Density, g/cm3 1.7
4.5
Embodied Carbon, kg CO2/kg material 24
49
Embodied Energy, MJ/kg 160
840
Embodied Water, L/kg 970
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
65
Resilience: Unit (Modulus of Resilience), kJ/m3 250
880
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 71
35
Strength to Weight: Axial, points 41
31
Strength to Weight: Bending, points 52
31
Thermal Diffusivity, mm2/s 81
8.6
Thermal Shock Resistance, points 14
39

Alloy Composition

Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.25
Magnesium (Mg), % 97.5 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0
Nickel (Ni), % 0 to 0.010
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Silicon (Si), % 0 to 0.1
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4