MakeItFrom.com
Menu (ESC)

ISO-WD43150 Magnesium vs. Nickel 333

ISO-WD43150 magnesium belongs to the magnesium alloys classification, while nickel 333 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD43150 magnesium and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 2.8
34
Fatigue Strength, MPa 100
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
81
Shear Strength, MPa 140
420
Tensile Strength: Ultimate (UTS), MPa 250
630
Tensile Strength: Yield (Proof), MPa 150
270

Thermal Properties

Latent Heat of Fusion, J/g 350
320
Maximum Temperature: Mechanical, °C 95
1010
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 990
450
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 170
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
55
Density, g/cm3 1.7
8.5
Embodied Carbon, kg CO2/kg material 24
8.5
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 970
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
170
Resilience: Unit (Modulus of Resilience), kJ/m3 250
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
23
Strength to Weight: Axial, points 41
21
Strength to Weight: Bending, points 52
19
Thermal Diffusivity, mm2/s 81
2.9
Thermal Shock Resistance, points 14
16

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0
9.3 to 24.5
Magnesium (Mg), % 97.5 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.010
44 to 48
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
2.5 to 4.0
Residuals, % 0 to 0.3
0