MakeItFrom.com
Menu (ESC)

ISO-WD43150 Magnesium vs. S33228 Stainless Steel

ISO-WD43150 magnesium belongs to the magnesium alloys classification, while S33228 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD43150 magnesium and the bottom bar is S33228 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 2.8
34
Fatigue Strength, MPa 100
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
79
Shear Strength, MPa 140
380
Tensile Strength: Ultimate (UTS), MPa 250
570
Tensile Strength: Yield (Proof), MPa 150
210

Thermal Properties

Latent Heat of Fusion, J/g 350
310
Maximum Temperature: Mechanical, °C 95
1100
Melting Completion (Liquidus), °C 610
1410
Melting Onset (Solidus), °C 590
1360
Specific Heat Capacity, J/kg-K 990
470
Thermal Expansion, µm/m-K 27
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
37
Density, g/cm3 1.7
8.0
Embodied Carbon, kg CO2/kg material 24
6.2
Embodied Energy, MJ/kg 160
89
Embodied Water, L/kg 970
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
150
Resilience: Unit (Modulus of Resilience), kJ/m3 250
110
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
24
Strength to Weight: Axial, points 41
20
Strength to Weight: Bending, points 52
19
Thermal Shock Resistance, points 14
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0
36.5 to 42.3
Magnesium (Mg), % 97.5 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0 to 1.0
Nickel (Ni), % 0 to 0.010
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.3
0