MakeItFrom.com
Menu (ESC)

ISO-WD43150 Magnesium vs. S82011 Stainless Steel

ISO-WD43150 magnesium belongs to the magnesium alloys classification, while S82011 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD43150 magnesium and the bottom bar is S82011 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 2.8
34
Fatigue Strength, MPa 100
410
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
78
Shear Strength, MPa 140
490
Tensile Strength: Ultimate (UTS), MPa 250
730
Tensile Strength: Yield (Proof), MPa 150
510

Thermal Properties

Latent Heat of Fusion, J/g 350
290
Maximum Temperature: Mechanical, °C 95
1010
Melting Completion (Liquidus), °C 610
1420
Melting Onset (Solidus), °C 590
1380
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 170
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
12
Density, g/cm3 1.7
7.7
Embodied Carbon, kg CO2/kg material 24
2.6
Embodied Energy, MJ/kg 160
37
Embodied Water, L/kg 970
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
220
Resilience: Unit (Modulus of Resilience), kJ/m3 250
660
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
25
Strength to Weight: Axial, points 41
27
Strength to Weight: Bending, points 52
24
Thermal Diffusivity, mm2/s 81
4.0
Thermal Shock Resistance, points 14
20

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0
68.6 to 76.3
Magnesium (Mg), % 97.5 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
2.0 to 3.0
Molybdenum (Mo), % 0
0.1 to 1.0
Nickel (Ni), % 0 to 0.010
1.0 to 2.0
Nitrogen (N), % 0
0.15 to 0.27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Residuals, % 0 to 0.3
0