MakeItFrom.com
Menu (ESC)

K1A Magnesium vs. EN 1.4980 Stainless Steel

K1A magnesium belongs to the magnesium alloys classification, while EN 1.4980 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is K1A magnesium and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 43
190
Elongation at Break, % 13
17
Fatigue Strength, MPa 39
410
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
75
Shear Strength, MPa 55
630
Tensile Strength: Ultimate (UTS), MPa 180
1030
Tensile Strength: Yield (Proof), MPa 51
680

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Mechanical, °C 120
920
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 650
1380
Specific Heat Capacity, J/kg-K 1000
470
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 27
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 170
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
26
Density, g/cm3 1.6
7.9
Embodied Carbon, kg CO2/kg material 24
6.0
Embodied Energy, MJ/kg 170
87
Embodied Water, L/kg 970
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
150
Resilience: Unit (Modulus of Resilience), kJ/m3 30
1180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 73
24
Strength to Weight: Axial, points 31
36
Strength to Weight: Bending, points 43
28
Thermal Diffusivity, mm2/s 75
3.5
Thermal Shock Resistance, points 11
22

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0
13.5 to 16
Iron (Fe), % 0
49.2 to 58.5
Magnesium (Mg), % 98.7 to 99.6
0
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0