MakeItFrom.com
Menu (ESC)

K1A Magnesium vs. C90500 Gun Metal

K1A magnesium belongs to the magnesium alloys classification, while C90500 gun metal belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is K1A magnesium and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 43
110
Elongation at Break, % 13
20
Fatigue Strength, MPa 39
90
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 17
40
Tensile Strength: Ultimate (UTS), MPa 180
320
Tensile Strength: Yield (Proof), MPa 51
160

Thermal Properties

Latent Heat of Fusion, J/g 350
190
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 650
1000
Melting Onset (Solidus), °C 650
850
Solidification (Pattern Maker's) Shrinkage, % 1.6
1.6
Specific Heat Capacity, J/kg-K 1000
370
Thermal Conductivity, W/m-K 120
75
Thermal Expansion, µm/m-K 27
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
11
Electrical Conductivity: Equal Weight (Specific), % IACS 170
11

Otherwise Unclassified Properties

Base Metal Price, % relative 13
35
Density, g/cm3 1.6
8.7
Embodied Carbon, kg CO2/kg material 24
3.6
Embodied Energy, MJ/kg 170
59
Embodied Water, L/kg 970
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
54
Resilience: Unit (Modulus of Resilience), kJ/m3 30
110
Stiffness to Weight: Axial, points 15
6.9
Stiffness to Weight: Bending, points 73
18
Strength to Weight: Axial, points 31
10
Strength to Weight: Bending, points 43
12
Thermal Diffusivity, mm2/s 75
23
Thermal Shock Resistance, points 11
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0
86 to 89
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 98.7 to 99.6
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
1.0 to 3.0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0
0 to 0.3