MakeItFrom.com
Menu (ESC)

K1A Magnesium vs. S45500 Stainless Steel

K1A magnesium belongs to the magnesium alloys classification, while S45500 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is K1A magnesium and the bottom bar is S45500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 43
190
Elongation at Break, % 13
3.4 to 11
Fatigue Strength, MPa 39
570 to 890
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
75
Shear Strength, MPa 55
790 to 1090
Tensile Strength: Ultimate (UTS), MPa 180
1370 to 1850
Tensile Strength: Yield (Proof), MPa 51
1240 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 350
270
Maximum Temperature: Mechanical, °C 120
760
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 650
1400
Specific Heat Capacity, J/kg-K 1000
470
Thermal Expansion, µm/m-K 27
11

Otherwise Unclassified Properties

Base Metal Price, % relative 13
17
Density, g/cm3 1.6
7.9
Embodied Carbon, kg CO2/kg material 24
3.8
Embodied Energy, MJ/kg 170
57
Embodied Water, L/kg 970
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
45 to 190
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 73
24
Strength to Weight: Axial, points 31
48 to 65
Strength to Weight: Bending, points 43
35 to 42
Thermal Shock Resistance, points 11
48 to 64

Alloy Composition

Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0
1.5 to 2.5
Iron (Fe), % 0
71.5 to 79.2
Magnesium (Mg), % 98.7 to 99.6
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
7.5 to 9.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0
0.8 to 1.4
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0