MakeItFrom.com
Menu (ESC)

R31537 Cobalt vs. CC380H Copper-nickel

R31537 cobalt belongs to the cobalt alloys classification, while CC380H copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is R31537 cobalt and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 14 to 23
26
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 87
47
Tensile Strength: Ultimate (UTS), MPa 1000 to 1340
310
Tensile Strength: Yield (Proof), MPa 590 to 940
120

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Melting Completion (Liquidus), °C 1360
1130
Melting Onset (Solidus), °C 1290
1080
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 13
46
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
11

Otherwise Unclassified Properties

Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 8.1
3.8
Embodied Energy, MJ/kg 110
58
Embodied Water, L/kg 530
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 200
65
Resilience: Unit (Modulus of Resilience), kJ/m3 780 to 1990
59
Stiffness to Weight: Axial, points 15
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 33 to 44
9.8
Strength to Weight: Bending, points 26 to 32
12
Thermal Diffusivity, mm2/s 3.4
13
Thermal Shock Resistance, points 24 to 32
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0 to 0.14
0
Chromium (Cr), % 26 to 30
0
Cobalt (Co), % 58.9 to 69
0
Copper (Cu), % 0
84.5 to 89
Iron (Fe), % 0 to 0.75
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
1.0 to 1.5
Molybdenum (Mo), % 5.0 to 7.0
0
Nickel (Ni), % 0 to 1.0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.25
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Zinc (Zn), % 0
0 to 0.5