MakeItFrom.com
Menu (ESC)

M1A Magnesium vs. AWS ER80S-Ni3

M1A magnesium belongs to the magnesium alloys classification, while AWS ER80S-Ni3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is M1A magnesium and the bottom bar is AWS ER80S-Ni3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 5.5
27
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
72
Tensile Strength: Ultimate (UTS), MPa 230
630
Tensile Strength: Yield (Proof), MPa 130
530

Thermal Properties

Latent Heat of Fusion, J/g 350
260
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 150
51
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 190
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
4.0
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 24
1.7
Embodied Energy, MJ/kg 160
23
Embodied Water, L/kg 970
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
160
Resilience: Unit (Modulus of Resilience), kJ/m3 180
740
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 71
24
Strength to Weight: Axial, points 38
22
Strength to Weight: Bending, points 49
21
Thermal Diffusivity, mm2/s 88
14
Thermal Shock Resistance, points 13
19

Alloy Composition

Calcium (Ca), % 0 to 0.3
0
Carbon (C), % 0
0 to 0.12
Copper (Cu), % 0 to 0.050
0 to 0.35
Iron (Fe), % 0
93.2 to 96.6
Magnesium (Mg), % 97.2 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0 to 1.3
Nickel (Ni), % 0 to 0.010
3.0 to 3.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0.4 to 0.8
Sulfur (S), % 0
0 to 0.025
Residuals, % 0
0 to 0.5