MakeItFrom.com
Menu (ESC)

M1A Magnesium vs. EN 1.1221 Steel

M1A magnesium belongs to the magnesium alloys classification, while EN 1.1221 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is M1A magnesium and the bottom bar is EN 1.1221 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 5.5
10 to 21
Fatigue Strength, MPa 88
240 to 340
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
72
Shear Strength, MPa 120
450 to 520
Tensile Strength: Ultimate (UTS), MPa 230
730 to 870
Tensile Strength: Yield (Proof), MPa 130
390 to 550

Thermal Properties

Latent Heat of Fusion, J/g 350
250
Maximum Temperature: Mechanical, °C 95
400
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 150
48
Thermal Expansion, µm/m-K 26
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 190
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.1
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 24
1.5
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 970
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
67 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 180
410 to 800
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 71
24
Strength to Weight: Axial, points 38
26 to 31
Strength to Weight: Bending, points 49
23 to 26
Thermal Diffusivity, mm2/s 88
13
Thermal Shock Resistance, points 13
23 to 28

Alloy Composition

Calcium (Ca), % 0 to 0.3
0
Carbon (C), % 0
0.57 to 0.65
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0
97.1 to 98.8
Magnesium (Mg), % 97.2 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.010
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Residuals, % 0 to 0.3
0