MakeItFrom.com
Menu (ESC)

M1A Magnesium vs. EN 1.4877 Stainless Steel

M1A magnesium belongs to the magnesium alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is M1A magnesium and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 5.5
36
Fatigue Strength, MPa 88
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
79
Shear Strength, MPa 120
420
Tensile Strength: Ultimate (UTS), MPa 230
630
Tensile Strength: Yield (Proof), MPa 130
200

Thermal Properties

Latent Heat of Fusion, J/g 350
310
Maximum Temperature: Mechanical, °C 95
1150
Melting Completion (Liquidus), °C 610
1400
Melting Onset (Solidus), °C 580
1360
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 26
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 190
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
37
Density, g/cm3 1.7
8.0
Embodied Carbon, kg CO2/kg material 24
6.2
Embodied Energy, MJ/kg 160
89
Embodied Water, L/kg 970
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
180
Resilience: Unit (Modulus of Resilience), kJ/m3 180
100
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
24
Strength to Weight: Axial, points 38
22
Strength to Weight: Bending, points 49
20
Thermal Diffusivity, mm2/s 88
3.2
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.025
Calcium (Ca), % 0 to 0.3
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0
36.4 to 42.3
Magnesium (Mg), % 97.2 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0 to 1.0
Nickel (Ni), % 0 to 0.010
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.3
0