MakeItFrom.com
Menu (ESC)

M1A Magnesium vs. EN 1.4959 Stainless Steel

M1A magnesium belongs to the magnesium alloys classification, while EN 1.4959 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is M1A magnesium and the bottom bar is EN 1.4959 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 5.5
40
Fatigue Strength, MPa 88
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
77
Shear Strength, MPa 120
430
Tensile Strength: Ultimate (UTS), MPa 230
630
Tensile Strength: Yield (Proof), MPa 130
190

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Mechanical, °C 95
1090
Melting Completion (Liquidus), °C 610
1400
Melting Onset (Solidus), °C 580
1350
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 26
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 190
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 1.7
8.0
Embodied Carbon, kg CO2/kg material 24
5.4
Embodied Energy, MJ/kg 160
76
Embodied Water, L/kg 970
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
190
Resilience: Unit (Modulus of Resilience), kJ/m3 180
96
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
24
Strength to Weight: Axial, points 38
22
Strength to Weight: Bending, points 49
20
Thermal Diffusivity, mm2/s 88
3.2
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 0
0.25 to 0.65
Calcium (Ca), % 0 to 0.3
0
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0
39.4 to 50.5
Magnesium (Mg), % 97.2 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0 to 1.5
Nickel (Ni), % 0 to 0.010
30 to 34
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.1
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.25 to 0.65
Residuals, % 0 to 0.3
0