MakeItFrom.com
Menu (ESC)

M1A Magnesium vs. Nickel 30

M1A magnesium belongs to the magnesium alloys classification, while nickel 30 belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is M1A magnesium and the bottom bar is nickel 30.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 5.5
34
Fatigue Strength, MPa 88
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
82
Shear Strength, MPa 120
440
Tensile Strength: Ultimate (UTS), MPa 230
660
Tensile Strength: Yield (Proof), MPa 130
270

Thermal Properties

Latent Heat of Fusion, J/g 350
320
Maximum Temperature: Mechanical, °C 95
1020
Melting Completion (Liquidus), °C 610
1480
Melting Onset (Solidus), °C 580
1430
Specific Heat Capacity, J/kg-K 990
450
Thermal Conductivity, W/m-K 150
10
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 190
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
60
Density, g/cm3 1.7
8.5
Embodied Carbon, kg CO2/kg material 24
9.4
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 970
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
180
Resilience: Unit (Modulus of Resilience), kJ/m3 180
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
23
Strength to Weight: Axial, points 38
22
Strength to Weight: Bending, points 49
20
Thermal Diffusivity, mm2/s 88
2.7
Thermal Shock Resistance, points 13
18

Alloy Composition

Calcium (Ca), % 0 to 0.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 31.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.050
1.0 to 2.4
Iron (Fe), % 0
13 to 17
Magnesium (Mg), % 97.2 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0 to 0.030
Molybdenum (Mo), % 0
4.0 to 6.0
Nickel (Ni), % 0 to 0.010
30.2 to 52.2
Niobium (Nb), % 0
0.3 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Tungsten (W), % 0
1.5 to 4.0
Residuals, % 0 to 0.3
0