MakeItFrom.com
Menu (ESC)

M1A Magnesium vs. C83300 Brass

M1A magnesium belongs to the magnesium alloys classification, while C83300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is M1A magnesium and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
110
Elongation at Break, % 5.5
35
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 18
42
Tensile Strength: Ultimate (UTS), MPa 230
220
Tensile Strength: Yield (Proof), MPa 130
69

Thermal Properties

Latent Heat of Fusion, J/g 350
200
Maximum Temperature: Mechanical, °C 95
180
Melting Completion (Liquidus), °C 610
1060
Melting Onset (Solidus), °C 580
1030
Specific Heat Capacity, J/kg-K 990
380
Thermal Conductivity, W/m-K 150
160
Thermal Expansion, µm/m-K 26
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
32
Electrical Conductivity: Equal Weight (Specific), % IACS 190
33

Otherwise Unclassified Properties

Base Metal Price, % relative 12
30
Density, g/cm3 1.7
8.8
Embodied Carbon, kg CO2/kg material 24
2.7
Embodied Energy, MJ/kg 160
44
Embodied Water, L/kg 970
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
60
Resilience: Unit (Modulus of Resilience), kJ/m3 180
21
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 71
18
Strength to Weight: Axial, points 38
6.9
Strength to Weight: Bending, points 49
9.2
Thermal Diffusivity, mm2/s 88
48
Thermal Shock Resistance, points 13
7.9

Alloy Composition

Calcium (Ca), % 0 to 0.3
0
Copper (Cu), % 0 to 0.050
92 to 94
Lead (Pb), % 0
1.0 to 2.0
Magnesium (Mg), % 97.2 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0
Nickel (Ni), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0
1.0 to 2.0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0
0 to 0.7