MakeItFrom.com
Menu (ESC)

M1A Magnesium vs. C90500 Gun Metal

M1A magnesium belongs to the magnesium alloys classification, while C90500 gun metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is M1A magnesium and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
110
Elongation at Break, % 5.5
20
Fatigue Strength, MPa 88
90
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 18
40
Tensile Strength: Ultimate (UTS), MPa 230
320
Tensile Strength: Yield (Proof), MPa 130
160

Thermal Properties

Latent Heat of Fusion, J/g 350
190
Maximum Temperature: Mechanical, °C 95
170
Melting Completion (Liquidus), °C 610
1000
Melting Onset (Solidus), °C 580
850
Specific Heat Capacity, J/kg-K 990
370
Thermal Conductivity, W/m-K 150
75
Thermal Expansion, µm/m-K 26
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
11
Electrical Conductivity: Equal Weight (Specific), % IACS 190
11

Otherwise Unclassified Properties

Base Metal Price, % relative 12
35
Density, g/cm3 1.7
8.7
Embodied Carbon, kg CO2/kg material 24
3.6
Embodied Energy, MJ/kg 160
59
Embodied Water, L/kg 970
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
54
Resilience: Unit (Modulus of Resilience), kJ/m3 180
110
Stiffness to Weight: Axial, points 15
6.9
Stiffness to Weight: Bending, points 71
18
Strength to Weight: Axial, points 38
10
Strength to Weight: Bending, points 49
12
Thermal Diffusivity, mm2/s 88
23
Thermal Shock Resistance, points 13
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Calcium (Ca), % 0 to 0.3
0
Copper (Cu), % 0 to 0.050
86 to 89
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 97.2 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0
Nickel (Ni), % 0 to 0.010
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
1.0 to 3.0
Residuals, % 0
0 to 0.3