MakeItFrom.com
Menu (ESC)

M1A Magnesium vs. C94700 Bronze

M1A magnesium belongs to the magnesium alloys classification, while C94700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is M1A magnesium and the bottom bar is C94700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
110
Elongation at Break, % 5.5
7.9 to 32
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 18
43
Tensile Strength: Ultimate (UTS), MPa 230
350 to 590
Tensile Strength: Yield (Proof), MPa 130
160 to 400

Thermal Properties

Latent Heat of Fusion, J/g 350
200
Maximum Temperature: Mechanical, °C 95
190
Melting Completion (Liquidus), °C 610
1030
Melting Onset (Solidus), °C 580
900
Specific Heat Capacity, J/kg-K 990
380
Thermal Conductivity, W/m-K 150
54
Thermal Expansion, µm/m-K 26
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
12
Electrical Conductivity: Equal Weight (Specific), % IACS 190
12

Otherwise Unclassified Properties

Base Metal Price, % relative 12
34
Density, g/cm3 1.7
8.8
Embodied Carbon, kg CO2/kg material 24
3.5
Embodied Energy, MJ/kg 160
56
Embodied Water, L/kg 970
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
41 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 180
110 to 700
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 71
18
Strength to Weight: Axial, points 38
11 to 19
Strength to Weight: Bending, points 49
13 to 18
Thermal Diffusivity, mm2/s 88
16
Thermal Shock Resistance, points 13
12 to 21

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Calcium (Ca), % 0 to 0.3
0
Copper (Cu), % 0 to 0.050
85 to 90
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 97.2 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0 to 0.2
Nickel (Ni), % 0 to 0.010
4.5 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Zinc (Zn), % 0
1.0 to 2.5
Residuals, % 0
0 to 1.3