MakeItFrom.com
Menu (ESC)

M1A Magnesium vs. S20910 Stainless Steel

M1A magnesium belongs to the magnesium alloys classification, while S20910 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is M1A magnesium and the bottom bar is S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 5.5
14 to 39
Fatigue Strength, MPa 88
310 to 460
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
79
Shear Strength, MPa 120
500 to 570
Tensile Strength: Ultimate (UTS), MPa 230
780 to 940
Tensile Strength: Yield (Proof), MPa 130
430 to 810

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Mechanical, °C 95
1080
Melting Completion (Liquidus), °C 610
1420
Melting Onset (Solidus), °C 580
1380
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 26
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
22
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 24
4.8
Embodied Energy, MJ/kg 160
68
Embodied Water, L/kg 970
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 180
460 to 1640
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
25
Strength to Weight: Axial, points 38
28 to 33
Strength to Weight: Bending, points 49
24 to 27
Thermal Diffusivity, mm2/s 88
3.6
Thermal Shock Resistance, points 13
17 to 21

Alloy Composition

Calcium (Ca), % 0 to 0.3
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0
52.1 to 62.1
Magnesium (Mg), % 97.2 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0 to 0.010
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0.1 to 0.3
Residuals, % 0 to 0.3
0