MakeItFrom.com
Menu (ESC)

M1A Magnesium vs. S45500 Stainless Steel

M1A magnesium belongs to the magnesium alloys classification, while S45500 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is M1A magnesium and the bottom bar is S45500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 5.5
3.4 to 11
Fatigue Strength, MPa 88
570 to 890
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
75
Shear Strength, MPa 120
790 to 1090
Tensile Strength: Ultimate (UTS), MPa 230
1370 to 1850
Tensile Strength: Yield (Proof), MPa 130
1240 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 350
270
Maximum Temperature: Mechanical, °C 95
760
Melting Completion (Liquidus), °C 610
1440
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 990
470
Thermal Expansion, µm/m-K 26
11

Otherwise Unclassified Properties

Base Metal Price, % relative 12
17
Density, g/cm3 1.7
7.9
Embodied Carbon, kg CO2/kg material 24
3.8
Embodied Energy, MJ/kg 160
57
Embodied Water, L/kg 970
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
45 to 190
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
24
Strength to Weight: Axial, points 38
48 to 65
Strength to Weight: Bending, points 49
35 to 42
Thermal Shock Resistance, points 13
48 to 64

Alloy Composition

Calcium (Ca), % 0 to 0.3
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0 to 0.050
1.5 to 2.5
Iron (Fe), % 0
71.5 to 79.2
Magnesium (Mg), % 97.2 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.010
7.5 to 9.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0
0.8 to 1.4
Residuals, % 0 to 0.3
0