MakeItFrom.com
Menu (ESC)

Monel R-405 vs. EN AC-45000 Aluminum

Monel R-405 belongs to the nickel alloys classification, while EN AC-45000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is Monel R-405 and the bottom bar is EN AC-45000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
73
Elongation at Break, % 9.1 to 39
1.1
Fatigue Strength, MPa 210 to 250
75
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 62
27
Tensile Strength: Ultimate (UTS), MPa 540 to 630
180
Tensile Strength: Yield (Proof), MPa 190 to 350
110

Thermal Properties

Latent Heat of Fusion, J/g 270
470
Maximum Temperature: Mechanical, °C 900
180
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1300
520
Specific Heat Capacity, J/kg-K 430
870
Thermal Conductivity, W/m-K 23
120
Thermal Expansion, µm/m-K 14
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
27
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
81

Otherwise Unclassified Properties

Base Metal Price, % relative 50
11
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 7.9
7.7
Embodied Energy, MJ/kg 110
140
Embodied Water, L/kg 250
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 170
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 370
80
Stiffness to Weight: Axial, points 10
14
Stiffness to Weight: Bending, points 21
47
Strength to Weight: Axial, points 17 to 20
17
Strength to Weight: Bending, points 17 to 18
24
Thermal Diffusivity, mm2/s 5.9
47
Thermal Shock Resistance, points 17 to 20
8.0

Alloy Composition

Aluminum (Al), % 0
82.2 to 91.8
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 28 to 34
3.0 to 5.0
Iron (Fe), % 0 to 2.5
0 to 1.0
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0
0 to 0.55
Manganese (Mn), % 0 to 2.0
0.2 to 0.65
Nickel (Ni), % 63 to 72
0 to 0.45
Silicon (Si), % 0 to 0.5
5.0 to 7.0
Sulfur (S), % 0.025 to 0.060
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0
0 to 0.35