MakeItFrom.com
Menu (ESC)

Nickel 200 vs. C64800 Bronze

Nickel 200 belongs to the nickel alloys classification, while C64800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 200 and the bottom bar is C64800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
120
Elongation at Break, % 23 to 44
8.0
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 70
44
Shear Strength, MPa 300 to 340
380
Tensile Strength: Ultimate (UTS), MPa 420 to 540
640
Tensile Strength: Yield (Proof), MPa 120 to 370
630

Thermal Properties

Latent Heat of Fusion, J/g 290
220
Maximum Temperature: Mechanical, °C 900
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1440
1030
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 69
260
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
65
Electrical Conductivity: Equal Weight (Specific), % IACS 18
66

Otherwise Unclassified Properties

Base Metal Price, % relative 65
33
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 11
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 230
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
51
Resilience: Unit (Modulus of Resilience), kJ/m3 42 to 370
1680
Stiffness to Weight: Axial, points 11
7.4
Stiffness to Weight: Bending, points 21
18
Strength to Weight: Axial, points 13 to 17
20
Strength to Weight: Bending, points 14 to 17
19
Thermal Diffusivity, mm2/s 17
75
Thermal Shock Resistance, points 13 to 16
23

Alloy Composition

Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0
0 to 0.090
Cobalt (Co), % 0
1.0 to 3.0
Copper (Cu), % 0 to 0.25
92.4 to 98.8
Iron (Fe), % 0 to 0.4
0 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 99 to 100
0 to 0.5
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 0 to 0.35
0.2 to 1.0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5