MakeItFrom.com
Menu (ESC)

Nickel 201 vs. Grade 15 Titanium

Nickel 201 belongs to the nickel alloys classification, while grade 15 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 201 and the bottom bar is grade 15 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
110
Elongation at Break, % 4.5 to 45
20
Fatigue Strength, MPa 42 to 210
290
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 70
41
Shear Strength, MPa 270 to 380
340
Tensile Strength: Ultimate (UTS), MPa 390 to 660
540
Tensile Strength: Yield (Proof), MPa 80 to 510
430

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 900
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1440
1610
Specific Heat Capacity, J/kg-K 440
540
Thermal Conductivity, W/m-K 78
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 19
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 65
37
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 11
32
Embodied Energy, MJ/kg 150
520
Embodied Water, L/kg 230
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 17 to 720
870
Stiffness to Weight: Axial, points 11
13
Stiffness to Weight: Bending, points 21
35
Strength to Weight: Axial, points 12 to 20
33
Strength to Weight: Bending, points 13 to 19
33
Thermal Diffusivity, mm2/s 20
8.4
Thermal Shock Resistance, points 11 to 19
41

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.080
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.4
0 to 0.3
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 99 to 100
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
98.2 to 99.56
Residuals, % 0
0 to 0.4